Microscopy Primer
Light and Color
Microscope Basics
Special Techniques
Digital Imaging
Confocal Microscopy
Live-Cell Imaging
Photomicrography
Microscopy Museum
Virtual Microscopy
Fluorescence
Web Resources
License Info
Image Use
Custom Photos
Partners
Site Info
Contact Us
Publications
Home

The Galleries:

Photo Gallery
Silicon Zoo
Pharmaceuticals
Chip Shots
Phytochemicals
DNA Gallery
Microscapes
Vitamins
Amino Acids
Birthstones
Religion Collection
Pesticides
BeerShots
Cocktail Collection
Screen Savers
Win Wallpaper
Mac Wallpaper
Movie Gallery

Interactive Java Tutorials

Observing Objects in Water

An object seen in the water will usually appear to be at a different depth than it actually is, due to the refraction of light rays as they travel from the water into the air. This tutorial explores how fish, observed from the bank of a pond or lake, appear to be closer to the surface than they really are.

Interactive Java Tutorial
ATTENTION
Our servers have detected that your web browser does not have the Java Virtual Machine installed or it is not functioning properly. Please install this software in order to view our interactive Java tutorials. You may download the necessary software by clicking on the "Get It Now" button below.

 

The interactive tutorial initializes with a human eye observing a fish beneath a layer of water. Light rays reflected from the fish are refracted at the surface of the water, but the eyes and brain trace the light rays back into the water as thought they had not refracted, but traveled away from the fish in a straight line. This effect creates a "virtual" image of the fish that appears at a shallower depth. The Water Depth slider can be employed to increase or decrease the depth and demonstrate changes in the refraction angle and position of the virtual image.

As light passes from one substance into another, it will travel straight through with no change of direction when crossing the boundary between the two substances head-on (perpendicular, or a 90-degree angle of incidence). However, if the light impacts the boundary at any other angle it will be bent or refracted, with the degree of refraction increasing as the beam is progressively inclined at a greater angle with respect to the boundary. As an example, a beam of light striking water vertically will not be refracted, but if the beam enters the water at a slight angle it will be refracted to a very small degree. If the angle of the beam is increased even farther, the light will refract with increasing proportion to the entry angle. Early scientists realized that the ratio between the angle at which the light crosses the media interface and the angle produced after refraction is a very precise characteristic of the material producing the refraction effect.

A number of phenomena that result from light refraction are often observed in everyday life, including the illusion, created by refraction effects, of the actual depth of a fish in shallow water when observed from the bank of a lake or pond. When we peer through the water to observe fish swimming around the pond, they appear to be much closer to the surface than they really are. On the other hand, from the fish's point of view, the world appears distorted and compressed above the water due to virtual images created by refraction of reflected and transmitted light reaching the eyes of the fish. In fact, due to refraction, a fisherman on the bank appears to be farther away from the fish (from the fish's viewpoint) than he or she really is.

Contributing Authors

Matt Parry-Hill and Michael W. Davidson - National High Magnetic Field Laboratory, 1800 East Paul Dirac Dr., The Florida State University, Tallahassee, Florida, 32310.


BACK TO REFRACTION OF LIGHT

BACK TO LIGHT AND COLOR

Questions or comments? Send us an email.
© 1998-2013 by Michael W. Davidson and The Florida State University. All Rights Reserved. No images, graphics, scripts, or applets may be reproduced or used in any manner without permission from the copyright holders. Use of this website means you agree to all of the Legal Terms and Conditions set forth by the owners.
This website is maintained by our
Graphics & Web Programming Team
in collaboration with Optical Microscopy at the
National High Magnetic Field Laboratory.
Last modification: Wednesday, Mar 26, 2014 at 02:24 PM
Access Count Since February 19, 2003: 60595
For more information on microscope manufacturers,
use the buttons below to navigate to their websites: